Tools and Techniques for Automating the Analysis of EOSDIS Data

- Principal Investigator:
 - William Emery, U. of Colorado Aerospace Engineering
- Co-Principal Investigator:
 - Randal Davis, U. of Colorado LASP
- Co-Investigators:
 - Frank LoPinto, Computer Sciences Corporation
 - James Maslanik, U. of Colorado Aerospace Engineering
 - Lewis Pinson, U. of Colorado, Colorado Springs Computer Science
 - Louis Reich, Computer Sciences Corporation
 - Carol Wessman, U. of Colorado CIRES
 - Richard Wiener, U. of Colorado, Colorado Springs Computer Science
- Chief Developers:
 - Ann Bateson, U. of Colorado CIRES
 - Bob Biro, U. of Colorado CCAR
 - Rima Dolgonos, U. of Colorado LASP
 - David Judd, U. of Colorado LASP

Objectives

- 1 Make it easier for scientists who are not expert in a particular EOSDIS dataset to use that dataset in their analysis
- 2 Make it possible for scientists who are experts in particular datasets to analyze much larger volumes of data
- To do this, we are:
 - Providing a framework for generating custom data products
 - Allowing users to tap into the large base of existing data analysis tools
 - Helping users to set up those tools for use in their research
 - Connecting those tools to a scientist's own data analysis software
 - Adding intelligent software agents to the analysis process

Three Models of Distributed/Distributable Data Systems

Our Initial Design

Components To Be Developed Are Indicated as Rounded Rectangles

Accomplishments to Date

- Analyzed several existing object models to see how they would work in real science applications
 - Decided to use SAIF as the model for our initial prototype
- Extended SAIF with a set of objects for AVHRR data processing
- Selected and installed DEC Objectbroker as our CORBA implementation
- Adapted existing software for AVHRR processing to work with CORBA
- Installed Illustra for use as an object store
- Developed a World Wide Web interface for users to select data objects they want and to set up the process for generating those objects
- Combined all of the above into a simple prototype
- Tested the prototype
- Demonstrated that the basic approach is sound . . .
 - For example, CORBA is appropriate for use in scientific applications
- ... but there were problems with the initial design
 - Biggest problem is that legacy code is just too tough to port easily
 - CORBA complexity and cost is also a big concern
- Revamped the design and now implementing it

Updated Design

Implementation

Key Future Activities

- Add more software for analyzing AVHRR data, such as tools for snow cover and fire detection
- Extend to other data sets by supporting specific products for SSM/I (water vapor, precipation, etc.) and Landsat TM (spectral unmixing)
- Implement the Object Production Selection and Setup function in a generic fashion, so that it will work with any data set and user application
 - Add in prototype Method Selection Agents to provide assistance to users in selecting and configuring methods for a specific analysis task
- Determine how to implement the Data Product Ingest and Object Creation function and its associated interface to the DAAC
 - Allow the user to select a set of data products for immediate analysis and also to specify a standing order for recurring processing
- Develop and demonstrate use of intelligent agents for making data processing decisions based on data semantics
- Provide access to analysis tools from the Interactive Data Language and other widely used data analysis systems

What We Are Demonstrating Today

Sample Processing Path For AVHRR Data

